Battelle develops self-healing smart beads that detect and repair corrosion

Battelle scientists have developed a tiny bead, the Battelle Smart Corrosion Detector bead, that not only detects corrosion but delivers a payload to help heal the microscopic cracks that rust creates.

The Smart Corrosion Detector beads look like a fine, whitish powder that can be mixed with coatings used to protect pipelines and other critical infrastructure subject to corrosion. The self-healing smart beads detect and reveal corrosion forming on metal before it is visible to the naked eye. Once activated, the 20 to 50 micron beads release a proprietary chemical that fills the cracks.

The beads fluoresce in the presence of corrosion and can be seen with a special light. This not only provides an early indication that corrosion is happening (even it isn’t showing through the paint), but also creates an opportunity to mitigate the underlying problem while the beads repair and stem the onset of the corrosion.

Ram Lalgudi, a principal research scientist, and Battelle colleagues Kelly Jenkins, John Stropki and Wes Childers began working on this application of nanotechnology nearly a decade ago. They created a smart coating derived from functional nanomaterial that could be applied between a primer and topcoat. Now, they’ve developed a proof-of-concept technology that can be valuable for many industries, especially oil and gas.

For example, a technician could run a routine scan of the outer shell of a pipeline with a hand-held device and detect the presence of corrosion not yet visible otherwise. Then, while the nanomaterial was actively fighting the corrosion, the underlying problem could be addressed at that section, resulting in significant savings in time and money, as well as improved reliability, through early detection and remediation.

“This technology can not only address a major issue associated with protecting existing infrastructure in harsh or corrosive environments, but it can also improve the safety and reliability of new infrastructure as its installed, ” said Lalgudi, adding that Battelle is seeking collaborators to help take the product to market.

Battelle conducts research and development, designs and manufactures products, and delivers critical services for government and commercial customers. Headquartered in Columbus, Ohio, since its founding in 1929, Battelle serves the national security, health and life sciences, and energy and environmental industries.

 the Battelle Smart Corrosion Detector bead

Battelle Develops Self-Healing Smart Beads that Detect and Repair Corrosion
Battelle scientists have developed a tiny bead, the Battelle Smart Corrosion Detector™ bead, that not only detects corrosion but delivers a payload to help heal the microscopic cracks that rust creates.

The Smart Corrosion Detector beads look like a fine, whitish powder that can be mixed with coatings used to protect pipelines and other critical infrastructure subject to corrosion. The self-healing smart beads detect and reveal corrosion forming on metal before it is visible to the naked eye. Once activated, the 20 to 50 micron beads release a proprietary chemical that fills the cracks.

The beads fluoresce in the presence of corrosion and can be seen with a special light. This not only provides an early indication that corrosion is happening (even it isn’t showing through the paint), but also creates an opportunity to mitigate the underlying problem while the beads repair and stem the onset of the corrosion.

Ram Lalgudi, a principal research scientist, and Battelle colleagues Kelly Jenkins, John Stropki and Wes Childers began working on this application of nanotechnology nearly a decade ago. They created a smart coating derived from functional nanomaterial that could be applied between a primer and topcoat. Now, they’ve developed a proof-of-concept technology that can be valuable for many industries, especially oil & gas.

For example, a technician could run a routine scan of the outer shell of a pipeline with a hand-held device and detect the presence of corrosion not yet visible otherwise. Then, while the nanomaterial was actively fighting the corrosion, the underlying problem could be addressed at that section, resulting in significant savings in time and money, as well as improved reliability, through early detection and remediation.

“This technology can not only address a major issue associated with protecting existing infrastructure in harsh or corrosive environments, but it can also improve the safety and reliability of new infrastructure as its installed, ” said Lalgudi, adding that Battelle is seeking collaborators to help take the product to market.

About Battelle
Every day, the people of Battelle apply science and technology to solving what matters most. At major technology centers and national laboratories around the world, Battelle conducts research and development, designs and manufactures products, and delivers critical services for government and commercial customers. Headquartered in Columbus, Ohio since its founding in 1929, Battelle serves the national security, health and life sciences, and energy and environmental industries. For more information, visit www.battelle.org.

Got more questions about your project?

  • Drop files here or
    Accepted file types: jpeg, jpg, gif, png, pdf, Max. file size: 50 MB.
      Allowed formats: jpeg, jpg, gif, png, pdf
    • How would you like us to respond?

    • Note: Some questions will be published anonymously with their answers at the end of this story to share with other readers.